Building an AI-Powered Chatbot for Multi-Tenant POS Systems: A Microservices Journey
A Developer's Story of Integration, Isolation, and Intelligence
โก Quick Start (TL;DR)
Chatbot Service (Express + TypeScript + Redis)
โโโ AI Layer (GitHub Models GPT-4o)
โโโ Integration Layer (5 Microservices)
โ โโโ Auth Service (JWT Validation)
โ โโโ POS Core (Orders & Sales)
โ โโโ Inventory Service (Stock Data)
โ โโโ Payment Service (Transactions)
โ โโโ Restaurant Service (Store Operations)
โโโ Session Management (Redis with TTL)๐ค The Problem: Data Silos in Microservices
๐๏ธ Architecture Deep Dive
The Core Components
Architecture Diagram
Technology Stack Choices
๐ Integration Patterns: How Services Talk
Pattern 1: Service-to-Service Authentication
Pattern 2: Intelligent Data Aggregation
Pattern 3: Restaurant Service Integration
๐ค The AI Layer: Making It Conversational
Context-Aware Prompt Engineering
Intent Analysis and Dynamic Data Fetching
Intent Analysis Decision Flow
๐ Tenant Isolation: The Non-Negotiable
Layer 1: Authentication Middleware
Layer 2: Service Integration
Layer 3: Session Management
๐ฌ Session Management: Keeping Context
๐ฆ Rate Limiting: Protecting Resources
๐ The Request Flow: Putting It All Together
Complete Request Flow Sequence
๐ Bilingual Support: A Technical Challenge
Challenge 1: Language Detection
Challenge 2: Consistent Response Language
๐ Real-World Usage Examples
Example 1: Daily Sales Check
Example 2: Store Operations (Myanmar Language)
Example 3: Inventory Alert
๐ฏ Lessons Learned & Best Practices
1. Design for Failure
2. Start Simple, Optimize Later
3. Tenant Context Everywhere
4. Keep AI Context Lean
5. Graceful Error Messages
๐ง Local Development Setup
๐ Deployment Considerations
Docker Deployment
Environment Variables Checklist
Monitoring & Observability
๐ญ Reflections: Why This Matters
The Bigger Picture
๐ Architecture Summary
๐ฌ Final Thoughts
PreviousIntegrating MCP Servers with VS Code Copilot: A Complete GuideNextHugging Face Transformers 101
Last updated