End-to-End Example

The Complete Workflow

Let's put everything together with a realistic example: Building and deploying a text classification model using Kubeflow and Python 3.12.

Project: Sentiment analysis for customer reviews

Requirements:

  • Automatically retrain weekly with new data

  • Deploy with 99.5% uptime

  • Scale based on traffic

  • Monitor performance and drift

  • Rollback capability

Project Structure

sentiment-classifier/
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ raw/
β”‚   └── processed/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ data.py          # Data loading and validation
β”‚   β”œβ”€β”€ features.py      # Feature engineering
β”‚   β”œβ”€β”€ model.py         # Model training
β”‚   └── inference.py     # Inference server
β”œβ”€β”€ pipelines/
β”‚   β”œβ”€β”€ training_pipeline.py
β”‚   └── deployment_pipeline.py
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ test_data.py
β”‚   β”œβ”€β”€ test_model.py
β”‚   └── test_inference.py
β”œβ”€β”€ kubernetes/
β”‚   β”œβ”€β”€ namespace.yaml
β”‚   └── inference-service.yaml
β”œβ”€β”€ Dockerfile
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ setup.py
└── README.md

Step 1: Data Processing

Step 2: Feature Engineering

Step 3: Model Training

Step 4: Kubeflow Pipeline

Step 5: Inference Service

Step 6: Dockerfile

Step 7: Kubernetes Deployment

Step 8: Monitoring Setup

Step 9: Scheduled Retraining

Running the Complete Workflow

Deploy Everything

Test the Service

Key Takeaways

  1. Start with a clear project structure

  2. Automate the entire pipelineβ€”data to deployment

  3. Monitor everything from day one

  4. Use version control for code, models, and configuration

  5. Plan for retraining and updates

What We Built

  • βœ… Automated data validation and processing

  • βœ… Reproducible training pipeline

  • βœ… Automated model validation

  • βœ… Scalable inference service

  • βœ… Prometheus monitoring

  • βœ… Scheduled retraining

  • βœ… CI/CD integration

  • βœ… Production-ready deployment

This is a complete, production-ready MLOps system using Kubeflow and Python 3.12.


Congratulations! You've learned how to build end-to-end MLOps systems. Continue iterating, monitoring, and improving your ML workflows.

Resources:

Last updated