Understanding DataOps
What DataOps Means to Me: Beyond the Buzzword
My DataOps Architecture: Medallion Pattern on AWS with Databricks
1. Bronze Layer: Raw Data Ingestion with AWS S3 and Lambda
# This Lambda function is triggered whenever a file lands in our intake S3 bucket
import boto3
import json
import os
import time
from datetime import datetime
def lambda_handler(event, context):
s3_client = boto3.client('s3')
# Extract bucket and key information
source_bucket = event['Records'][0]['s3']['bucket']['name']
source_key = event['Records'][0]['s3']['object']['key']
file_name = os.path.basename(source_key)
# Generate metadata
now = datetime.now()
timestamp = int(time.time())
date_partition = now.strftime('%Y/%m/%d')
# Copy to bronze layer with partitioning and metadata
destination_key = f"bronze/source={source_bucket}/ingestion_date={date_partition}/{timestamp}_{file_name}"
# Add metadata as a companion JSON file
metadata = {
'source_bucket': source_bucket,
'source_key': source_key,
'ingestion_timestamp': timestamp,
'ingestion_date': now.isoformat(),
'file_size_bytes': event['Records'][0]['s3']['object']['size'],
'aws_region': os.environ['AWS_REGION']
}
# Copy the file to the data lake
s3_client.copy_object(
Bucket=os.environ['DATA_LAKE_BUCKET'],
CopySource={'Bucket': source_bucket, 'Key': source_key},
Key=destination_key
)
# Write metadata alongside the file
s3_client.put_object(
Body=json.dumps(metadata),
Bucket=os.environ['DATA_LAKE_BUCKET'],
Key=f"{destination_key}.metadata.json"
)
print(f"Successfully ingested {source_key} to {destination_key}")
# Trigger Databricks job for processing if needed
if os.environ.get('TRIGGER_DATABRICKS_JOB', 'false').lower() == 'true':
databricks_job_id = os.environ['DATABRICKS_JOB_ID']
trigger_databricks_job(databricks_job_id, destination_key)
return {
'statusCode': 200,
'body': json.dumps(f'File {file_name} ingested successfully')
}
def trigger_databricks_job(job_id, file_path):
# Implementation to trigger Databricks job via API
pass2. Silver Layer: Data Validation and Cleansing with Databricks and PySpark
3. Gold Layer: Analytics-Ready Data with PySpark
Automating It All: My CI/CD Pipeline for Data
Setting Up Observability: The Game-Changer
Lessons I've Learned the Hard Way
1. Start with Version Control for Everything
2. Make Data Quality Everyone's Responsibility
3. Implement Self-Documenting Systems
4. Test Everything in Isolation First
My DataOps Toolbox
Getting Started with DataOps
Last updated