Workflow Orchestration

← Previous: ETL/ELT Pipelines | Back to Index | Next: Data Quality & Testing →

Introduction

Apache Airflow has become my primary orchestration tool. It schedules, monitors, and manages complex data pipelines. This article covers production Airflow patterns I use daily.

Airflow Fundamentals

DAG (Directed Acyclic Graph)

# Python 3.12 - Basic DAG
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta

default_args = {
    'owner': 'data-eng',
    'depends_on_past': False,
    'email': ['[email protected]'],
    'email_on_failure': True,
    'email_on_retry': False,
    'retries': 3,
    'retry_delay': timedelta(minutes=5),
}

with DAG(
    'user_metrics_pipeline',
    default_args=default_args,
    description='Calculate daily user metrics',
    schedule='0 2 * * *',  # Run at 2 AM daily
    start_date=datetime(2026, 1, 1),
    catchup=False,
    tags=['metrics', 'users'],
) as dag:
    
    def extract_data(**context):
        """Extract user data."""
        execution_date = context['ds']
        logging.info(f"Extracting data for {execution_date}")
        # Extraction logic
        return {'records': 1000}
    
    def transform_data(**context):
        """Transform extracted data."""
        ti = context['ti']
        extract_result = ti.xcom_pull(task_ids='extract')
        logging.info(f"Transforming {extract_result['records']} records")
        # Transformation logic
        return {'records': 950}
    
    def load_data(**context):
        """Load to warehouse."""
        ti = context['ti']
        transform_result = ti.xcom_pull(task_ids='transform')
        logging.info(f"Loading {transform_result['records']} records")
        # Load logic
    
    # Define tasks
    extract = PythonOperator(
        task_id='extract',
        python_callable=extract_data,
    )
    
    transform = PythonOperator(
        task_id='transform',
        python_callable=transform_data,
    )
    
    load = PythonOperator(
        task_id='load',
        python_callable=load_data,
    )
    
    # Define dependencies
    extract >> transform >> load

Production DAG Patterns

Dynamic Task Generation

Task Groups

Sensors for External Dependencies

XCom for Task Communication

Branching Logic

Error Handling and Retries

Database Operators

Monitoring and Alerting

Best Practices

1. Idempotent Tasks

2. Resource Management

3. Testing DAGs

Conclusion

Airflow orchestrates complex data workflows reliably. Use DAGs for scheduling, sensors for dependencies, and XCom for task communication.

Key takeaways:

  • Design DAGs to be idempotent

  • Use sensors for external dependencies

  • Implement proper error handling and retries

  • Monitor pipeline health

  • Test DAGs before production


Navigation:

Last updated