Data Engineering Best Practices

← Previous: Streaming & Real-Time Data | Next: Real-World Project β†’

Introduction

Throughout my data engineering career, I've learned that building pipelines is the easy partβ€”maintaining them in production is the real challenge. This article covers production best practices I wish I'd known earlier: code quality, version control, CI/CD, monitoring, security, and cost optimization.

These aren't theoretical guidelinesβ€”they're battle-tested practices from real production systems processing terabytes of data daily.

Code Quality and Structure

Project Structure

I organize data engineering projects with clear separation of concerns:

data-pipeline/
β”œβ”€β”€ README.md
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ .env.example
β”œβ”€β”€ .gitignore
β”œβ”€β”€ setup.py
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ config/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── settings.py
β”‚   β”œβ”€β”€ extractors/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ api_extractor.py
β”‚   β”‚   └── database_extractor.py
β”‚   β”œβ”€β”€ transformers/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ cleaner.py
β”‚   β”‚   └── aggregator.py
β”‚   β”œβ”€β”€ loaders/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ database_loader.py
β”‚   β”‚   └── s3_loader.py
β”‚   └── utils/
β”‚       β”œβ”€β”€ __init__.py
β”‚       β”œβ”€β”€ logging.py
β”‚       └── validators.py
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ test_extractors.py
β”‚   β”œβ”€β”€ test_transformers.py
β”‚   └── test_loaders.py
β”œβ”€β”€ airflow/
β”‚   └── dags/
β”‚       └── daily_etl_dag.py
└── scripts/
    β”œβ”€β”€ setup_database.py
    └── run_pipeline.py

Configuration Management

Never hardcode credentials or configurations:

Logging Best Practices

Error Handling and Retries

Version Control with Git

Git Workflow for Data Pipelines

I use feature branches and pull requests:

.gitignore for Data Projects

Meaningful Commit Messages

CI/CD for Data Pipelines

GitHub Actions Workflow

Testing Data Pipelines

Monitoring and Observability

Pipeline Monitoring

Alerting

Data Quality and Validation

Cost Optimization

Best Practices

  1. Use spot instances for non-critical batch jobs

  2. Compress data before storing (Parquet with Snappy compression)

  3. Partition data to reduce scan costs

  4. Archive old data to cheaper storage tiers (S3 Glacier)

  5. Right-size resources (don't over-provision)

  6. Schedule batch jobs during off-peak hours

  7. Monitor costs with billing alerts

Key Takeaways

  • Code quality: Use type hints, linting, and formatters

  • Configuration: Never hardcode credentials

  • Logging: Comprehensive logging for debugging

  • Version control: Meaningful commits, feature branches

  • CI/CD: Automated testing and deployment

  • Monitoring: Track metrics and set up alerts

  • Testing: Unit tests and integration tests

  • Cost optimization: Compress, partition, archive

← Previous: Streaming & Real-Time Data | Next: Real-World Project β†’

Last updated