Data Engineering Best Practices
Introduction
Code Quality and Structure
Project Structure
data-pipeline/
βββ README.md
βββ requirements.txt
βββ pyproject.toml
βββ .env.example
βββ .gitignore
βββ setup.py
βββ src/
β βββ __init__.py
β βββ config/
β β βββ __init__.py
β β βββ settings.py
β βββ extractors/
β β βββ __init__.py
β β βββ api_extractor.py
β β βββ database_extractor.py
β βββ transformers/
β β βββ __init__.py
β β βββ cleaner.py
β β βββ aggregator.py
β βββ loaders/
β β βββ __init__.py
β β βββ database_loader.py
β β βββ s3_loader.py
β βββ utils/
β βββ __init__.py
β βββ logging.py
β βββ validators.py
βββ tests/
β βββ __init__.py
β βββ test_extractors.py
β βββ test_transformers.py
β βββ test_loaders.py
βββ airflow/
β βββ dags/
β βββ daily_etl_dag.py
βββ scripts/
βββ setup_database.py
βββ run_pipeline.pyConfiguration Management
Logging Best Practices
Error Handling and Retries
Version Control with Git
Git Workflow for Data Pipelines
.gitignore for Data Projects
Meaningful Commit Messages
CI/CD for Data Pipelines
GitHub Actions Workflow
Testing Data Pipelines
Monitoring and Observability
Pipeline Monitoring
Alerting
Data Quality and Validation
Cost Optimization
Best Practices
Key Takeaways
Last updated