Scalability Patterns
Understanding Scalability
Horizontal vs Vertical Scaling
Vertical Scaling (Scale Up)
# Configuration for vertical scaling - PostgreSQL on larger instance
# docker-compose.yml for development
version: '3.8'
services:
postgres:
image: postgres:16
environment:
POSTGRES_DB: myapp
POSTGRES_USER: app_user
POSTGRES_PASSWORD: ${DB_PASSWORD}
# Vertical scaling: Allocate more resources
deploy:
resources:
limits:
cpus: '4.0' # Increased from 2.0
memory: 16G # Increased from 8G
reservations:
cpus: '2.0'
memory: 8G
volumes:
- postgres_data:/var/lib/postgresql/data
# Performance tuning for larger instance
command: >
postgres
-c shared_buffers=4GB
-c effective_cache_size=12GB
-c maintenance_work_mem=1GB
-c max_connections=200
-c work_mem=20MB
volumes:
postgres_data:Horizontal Scaling (Scale Out)
Load Balancing Strategies
1. Round Robin
2. Least Connections
3. IP Hash / Sticky Sessions
4. Weighted Load Balancing
Stateless vs Stateful Services
Stateless Services
Stateful Services
Auto-Scaling Patterns
Metrics I Use for Auto-Scaling
Auto-Scaling Configuration (AWS)
Lessons Learned from Auto-Scaling
Database Scalability
Read Replicas
Real-World Scaling Journey
What's Next
Last updated